skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qian, Yuqin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 15, 2026
  2. Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used to extensively study molecular systems, providing unique information such as coherence sensitivity, molecular configurations, enhanced resolution, and correlated states and their dynamics. However, the analogy of interfacial 2D spectroscopy has fallen behind. Our recent work presented interface-specific 2D-EV spectroscopy (i2D-EV). In this work, we develop interface-specific two-dimensional vibrational–electronic spectroscopy (i2D-VE). The fourth-order spectroscopy is based on a Mach–Zehnder IR interferometer that accurately controls the time delay of an IR pump pulse pair for vibrational transitions, followed by broadband interface second-harmonic generation to probe electronic transitions. We demonstrate step-by-step how a fourth-order i2D-VE spectrum of AP3 molecules at the air/water interface was collected and analyzed. The line shape and signatures of i2D-VE peaks reveal solvent correlations and the spectral nature of vibronic couplings. Together, i2D-VE and i2D-EV spectroscopy provide coupling of different behaviors of the vibrational ground state or excited states with electronic states of molecules at interfaces and surfaces. The methodology presented here could also probe dynamic couplings of electronic and vibrational motions at interfaces and surfaces, extending the usefulness of the rich data that are obtained. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. The movements of molecules at interfaces and surfaces are restricted by their asymmetric environments, leading to anisotropic orientational motions. In this work, in-plane orientational motions of the –C=O and –CF3 groups of coumarin 153 (C153) at the air/water interface were measured using time-resolved (TR) vibrational sum frequency generation (SFG). The in-plane orientational time constants of the –C=O and –CF3 groups of C153 are found to be 41.5 ± 8.2 and 36.0 ± 4.5 ps. These values are over five-times faster than that of 198 ± 15 ps for the permanent dipole of the whole C153 molecule at the interface, which may indicate that the two groups experience different interfacial friction in the plane. These differences could also be the result of the permanent dipole of C153 being almost five times those of the –C=O and –CF3 groups. The difference in orientational motions reveals the microscopic heterogeneous environment that molecules experience at the interface. While the interfacial dynamics of the two functional groups are similar, our TR-SFG experiments allowed the quantification of the in-plane dynamics of individual functional groups for the first time. Our experimental findings about the interfacial molecular motion have implications for molecular rotations, energy transfer, and charge transfer at material interfaces, photocatalysis interfaces, and biological cell/membrane aqueous interfaces. 
    more » « less
  4. Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic–vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump–probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field. 
    more » « less
  5. The surface states of photoelectrodes as catalysts heavily influence their performance in photocatalysis and photoelectrocatalysis applications. These catalysts are necessary for developing robust solutions to the climate and global energy crises by promoting CO2 reduction, N2 reduction, contaminant degradation, and water splitting. The semiconductors that can fill this role are beholden as photoelectrodes to the processes of charge generation, separation, and utilization, which are in turn products of surface states, surface electric fields, and surface carrier dynamics. Methods which are typically used for studying these processes to improve semiconductors are indirect, invasive, not surface specific, not practical under ambient conditions, or a combination thereof. Recently, nonlinear optical processes such as electronic sum-frequency generation (ESFG) and second-harmonic generation (ESHG) have gained popularity in investigations of semiconductor catalysts systems. Such techniques possess many advantages of in-situ analysis, interfacial specificity, non-invasiveness, as well as the ability to be used under any conditions. In this review, we detail the importance of surface states and their intimate relationship with catalytic performance, outline methods to investigate semiconductor surface states, electric fields, and carrier dynamics and highlight recent contributions to the field through interface-specific spectroscopy. We will also discuss how the recent development of heterodyne-detected ESHG (HD-ESHG) was used to extract charged surface states through phase information, time-resolved ESFG (TR-ESFG) to obtain in-situ dynamic process monitoring, and two-dimensional ESFG (2D-ESFG) to explore surface state couplings, and how further advancements in spectroscopic technology can fill in knowledge gaps to accelerate photoelectrocatalyst utilization. We believe that this work will provide a valuable summary of the importance of semiconductor surface states and interfacial electronic properties, inform a broad audience of the capabilities of nonlinear optical techniques, and inspire future original approaches to improving photocatalytic and photoelectrocatalytic devices. 
    more » « less
  6. The escalating global energy predicament implores for a revolutionary resolution—one that converts sunlight into electricity—holding the key to supreme conversion efficiency. This comprehensive review embarks on the exploration of the principle of generating multiple excitons per absorbed photon, a captivating concept that possesses the potential to redefine the fundamental confines of conversion efficiency, albeit its application remains limited in photovoltaic devices. At the nucleus of this phenomenon are two principal processes: multiple exciton generation (MEG) within quantum-confined environments, and singlet fission (SF) inside molecular crystals. The process of SF, characterized by the cleavage of a single photogenerated singlet exciton into two triplet excitons, holds promise to potentially amplify photon-to-electron conversion efficiency twofold, thereby laying the groundwork to challenge the detailed balance limit of solar cell efficiency. Our discourse primarily dissects the complex nature of SF in crystalline organic semiconductors, laying special emphasis on the anisotropic behavior of SF and the diffusion of the subsequent triplet excitons in single-crystalline polyacene organic semiconductors. We initiate this journey of discovery by elucidating the principles of MEG and SF, tracing their historical genesis, and scrutinizing the anisotropy of SF and the impact of quantum decoherence within the purview of functional mode electron transfer theory. We present an overview of prominent techniques deployed in investigating anisotropic SF in organic semiconductors, including femtosecond transient absorption microscopy and imaging as well as stimulated Raman scattering microscopies, and highlight recent breakthroughs linked with the anisotropic dimensions of Davydov splitting, Herzberg–Teller effects, SF, and triplet transport operations in single-crystalline polyacenes. Through this comprehensive analysis, our objective is to interweave the fundamental principles of anisotropic SF and triplet transport with the current frontiers of scientific discovery, providing inspiration and facilitating future ventures to harness the anisotropic attributes of organic semiconductor crystals in the design of pioneering photovoltaic and photonic devices. 
    more » « less